

MINERVA: An Out-of-the-box GUI Tool for Data-Driven Deep Reinforcement Learning

User Guides

	Installation Guide
	Recommended Platforms

	Install MINERVA

	Install MINERVA via Docker

	Getting Started
	Prepare Datasets

	Start Server

	Upload Dataset

	Create Project

	Start Training

	Export Policy Function

	Tutorials
	CartPole

	MINERVA CLI
	run

	clean

	upgrade-db

	downgrade-db

Others

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation Guide

Recommended Platforms

Operating System

MINERVA is only tested on Linux and macOS.
However, you can possibly run MINERVA on Windows as long as PyTorch runs since
it’s the core dependency.

Browser

For now, MINERVA is only tested with Chrome. There would be incompatibilities
with other browsers (I’ve confirmed some glitches on Safari).

Install MINERVA

Install MINERVA via PyPI

pip is a recommended way to install minerva:

$ pip install minerva-ui

Install MINERVA from source

You can also install via GitHub repository:

$ git clone https://github.com/takuseno/minerva
$ cd minerva
$ npm install
$ npm run build
$ pip install -e .

Install MINERVA via Docker

If you use GPU devices, you need to setup nvidia-docker [https://github.com/NVIDIA/nvidia-docker] properly:

$ docker run -d --gpus all -p 9000:9000 --name minerva takuseno/minerva:latest
$ # MINERVA server is running

Getting Started

Prepare Datasets

Dataset with vector observation

The dataset must be a CSV file containing the following columns.
The data should be chronologically ordered.

columns

	column name

	description

	episode

	an episode ID

	observation:X

	a real value for the Xth dimension in an observation

	action:X

	a real value for the Xth dimension in an action (continuous control) or an action ID (discrete control)

	reward

	a real value for reward

This is an example CartPole data:

episode,observation:0,observation:1,observation:2,observation:3,action:0,reward
0,0.03197332076282214,0.023978136772313002,-0.01460231690901137,0.01428123941035453,1,0.0
0,0.0324528834982684,0.21930642661209865,-0.01431669212080428,-0.28297288746447075,0,1.0
.
.
.

Dataset with image observation

The dataset must contain a CSV file and image files.
The data must contain the following columns.

columns

	column name

	description

	episode

	an episode ID

	observation:0

	a image file name (e.g. observation_0.png)

	action:X

	a real value for the Xth dimension in an action (continuous control) or an action ID (discrete control)

	reward

	a real value for reward

This is an example:

episode,observation:0,action:0,reward
0,observation_0.png,1,0.0
0,observation_1.png,0,0.0
.
.
.

Note

The image files must be located in the directory that contains only image files to upload.

Start Server

At the first launch, $HOME/.minerva will be created to store datasets, databases and training metrics.
You can configure this by setting $MINERVA_DIR.
For example:

$ export MINERVA_DIR=$HOME/.custom_dir

Now you can start MINERVA as follows:

$ minerva run [--host HOST_NAME] [--port PORT]

Then, open http://localhost:9000 and you’ll see the MINERVA UI.

[image: _images/startup.jpg]

Upload Dataset

To upload a new dataset, click ADD DATASET button.

[image: _images/add_dataset.jpg]

Upload dataset with vector observation

	Click UPLOAD button to select the dataset CSV file.

	Check discrete control if the action-space is discrete.

	Click SUBMIT to upload the dataset.

[image: _images/dataset_dialog.jpg]
This is an example dashboard screen after uploading a vector dataset.

[image: _images/dataset_dashboard_vector.jpg]

Upload dataset with image observation

	Click UPLOAD button to select the dataset CSV file.

	Check discrete control if the action-space is discrete.

	Check image observation.

	Click UPLOAD IMAGE DIRECTORY button to select the directory containing image files.

	Click SUBMIT to upload the dataset.

[image: _images/image_dataset_dialog.jpg]
This is an example dashboard screen after uploading an image dataset.

[image: _images/dataset_dashboard_image.jpg]

Note

The all files in the selected directory will be uploaded.

Create Project

To create a new project, click ADD PROJECT in the project page.

[image: _images/add_project.jpg]
Then,

	Choose a dataset from the uploaded ones.

	Fill the project name.

	Click SUBMIT button to create.

[image: _images/project_dialog.jpg]

Start Training

Once you created a project, you will see an empty project like below.

[image: _images/project_page.jpg]
Click RUN button to start training.

[image: _images/run_button.jpg]

Train with vector observation

	Configure training settings.

	Choose device to use CPU or GPU.

	(optional) Configure advanced settings to click SHOW ADVANCED CONFIGURATIONS.

	Click SUBMIT to start training.

[image: _images/experiment_dialog.jpg]

Train with image observation

To train with image observation, you will see different configurations from
vector observation projects.
The most important option is N_FRAMES which controls frame stacking to
handle temporal data without recurrent networks.

[image: _images/image_experiment_dialog.jpg]

Note

Basically, the SCALER option should be set to PIXEL when training with image observation.

Once starting training, you will see information about your training.
If you need to kill the training process in the middle of training,
click CANCEL button.

[image: _images/training.jpg]

Export Policy Function

To export the trained policy, click DOWNLOAD button.

[image: _images/download_button.jpg]
Then,

	Choose an epoch to export.

	Choose a format (e.g. TorchScript and ONNX).

	Click DOWNLOAD.

[image: _images/export_dialog.jpg]
See how you use the exported policy at Deploy.

Tutorials

CartPole

Download dataset

First of all, download the cartpole dataset as follows:

$ wget https://www.dropbox.com/s/vc7fm7qdnu0kh01/cartpole.csv?dl=1 -O cartpole.csv

Or access to https://www.dropbox.com/s/vc7fm7qdnu0kh01/cartpole.csv .

Train

Follow instruction from Upload Dataset to Start Training.

Deploy

Finally, you can download the trained policy as Export Policy Function.
At this time, you have two options of the model format, TorchScript and ONNX.

TorchScript

You can load the policy in two lines of codes only with PyTorch.

import torch

policy = torch.jit.load('policy.pt')

It’s easy, right?

Then you can write the rest of interaction codes as usual.

import gym

env = gym.make('CartPole-v0')

observation = env.reset()

while True:
 # feed observation to the policy
 action = policy(torch.tensor([observation], dtype=torch.float32))

 # take action to get next observation
 observation, _, done, _ = env.step(action[0].numpy())

 # rendering environment
 env.render()

 # break if the episode reaches the termination
 if done:
 break

ONNX

In this tutorial, onnxruntime [https://github.com/microsoft/onnxruntime] is
used to load the model.

import onnxruntime as ort

ort_session = ort.InferenceSession('policy.onnx')

Basically, ONNX is also easy to load.

Then you can write the rest of interaction codes like above.

import gym

env = gym.make('CartPole-v0')

observation = env.reset()

while True:
 # change dtype strictly to float32 and expand its shape
 observation = observation.astype('f4').reshape((1, -1))

 # feed observation to the policy
 action = ort_session.run(None, {'input_0': observation})[0]

 # take action to get next observation
 observation, _, done, _ = env.step(action[0])

 # rendering environment
 env.render()

 # break if the episode reaches the termination
 if done:
 break

MINERVA CLI

run

Run the MINERVA server. To stop, press Ctrl+C on the console:

$ minerva run

	--host or -h: (optional) set host name (0.0.0.0 by default).

	--port or -p: (optional) set port number (9000 by default).

clean

Clean all data including the database, the training metrics, and trained parameters:

$ minerva clean

upgrade-db

Upgrade database based on the latest schema definitions.
This command should be called after version updates:

$ minerva upgrade-db

downgrade-db

Downgrade database to the previous revision:

$ minerva downgrade-db

License

MIT License

Copyright (c) 2020 Takuma Seno

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

 _static/file.png

_static/minus.png

_images/download_button.jpg
1

N

WICAIN

NONE

DELETE

DOWNLOAD

_static/up-pressed.png

_images/experiment_dialog.jpg
MINERVA | PROJECTS DATASETS

[
ADD PROJECT ca rtpOle

RUN EDIT DELETE

ALGORITHM CQL

Run experiment

CQL_202096135155

N EPOCHS 100
QFUNCTYPE MEAN v
SCALER NONE v
DEVICE CPU v
BATCH SIZE 32

SHOW ADVANCED CONFIGURATIONS

SUBMIT CANCEL

_static/up.png

_images/dataset_dashboard_vector.jpg
MINERVA PROJECTS DATASETS o}

ADD DATASET ca rtpOle.CSV EDIT DELETE
cartpole.csv
Information
observation type vector step 0 1 2 3
observation shape (4)
action type discrete 0 0.0320 0.0240 -0.0146 0.0143
action size 2 1 0.0325 02193 -0.0143 -0.2830
number of episodes 539
number of steps 99594 2 0.0368 0.0244 -0.0200 0.0052
dataset size 2.68MiB 3 0.0373 0.2198 -0.0199 -0.2938
Statistics
Return Statistics
mean 184.78
standard deviation 20.75
maximum value 200.00
minimum value 18.00
280

210

ber ot episodes

_static/plus.png

_images/dataset_dialog.jpg
MINERVA PROJECTS DATASETS

ADD DATASET

UPLOAD

discrete control

image observation

Upload dataset

SUBMIT

CANCEL

_images/image_experiment_dialog.jpg
Run experiment

CQL_202096135559

N EPOCHS 100
QFUNCTYPE MEAN
SCALER PIXEL
N FRAMES 4
BATCH SIZE 32
DEVICE CPU

SHOW ADVANCED CONFIGURATIONS

SUBMIT CANCEL

_images/project_dialog.jpg
MINERVA | PROJECTS DATASETS

ADD PROJECT

Create project

CHOOSE DATASET

PROJECT NAME

SUBMIT

CANCEL

_images/export_dialog.jpg
MINERVA PROJECTS DATASETS o}
ADD PROJECT ca rtpo[e RUN EDIT DELETE
breakout DATASET cartpole.csv ACTION MATCH o

ALGORITHM CQL

@ CQL_20209614218

EPOCH

Q FUNCTION

SCALER

10/10
MEAN
NONE

1
success
|

DELETE

Download policy function

CQL_20209614218

EPOCH CHOOSE EPOCH TO DOWNLOAD ~»|
FORMAT TorchScript v
DOWNLOAD CANCEL ; i i ; i
5 6 T 8 9
nch
218
NAME AUGMENTATION BATCH SIZE ~ BOOTSTRAP EPS GAMMA LEARNING RATE N AUGMENTA
CQL_20209614218 = none 32 0.00015 0.99 0.0000625 1

_images/image_dataset_dialog.jpg
MINERVA PROJECTS DATASETS

ADD DATASET

Upload dataset

UPLOAD

discrete control

®image observation

UPLOAD IMAGE DIRECTORY

SUBMIT

CANCEL

_images/project_page.jpg
MINERVA PROJECTS DATASETS

ADD PROJECT

cartpole

cartpole

@

RUN

EDIT

DELETE

DATASET cartpole.csv
ALGORITHM CQL

_images/run_button.jpg
-

RUN EDIT DELETE

_images/add_dataset.jpg
MINERVA PROJECTS

ADD DATASET

_images/add_project.jpg
ADD PROJECT

_images/dataset_dashboard_image.jpg
MINERVA PROJECTS DATASETS {or

ADD DATASET b rea kO u t.CSV EDIT DELETE
Information
cartpole.csv

observationtype image
observation shape (1, 84, 84)
action type discrete
action size 4
number of episodes30
number of steps 10164

dataset size 68.76MiB
Statistics
Return Statistics

mean 6.13

standard deviation 2.49

maximum value 13.00

minimum value 3.00
.

ber of episodes

) . .

_images/startup.jpg
MINERVA PROJECTS DATASETS

ADD DATASET

nav.xhtml

 Table of Contents

 		
 MINERVA: An Out-of-the-box GUI Tool for Data-Driven Deep Reinforcement Learning

 		
 Installation Guide

 		
 Recommended Platforms

 		
 Operating System

 		
 Browser

 		
 Install MINERVA

 		
 Install MINERVA via PyPI

 		
 Install MINERVA from source

 		
 Install MINERVA via Docker

 		
 Getting Started

 		
 Prepare Datasets

 		
 Dataset with vector observation

 		
 Dataset with image observation

 		
 Start Server

 		
 Upload Dataset

 		
 Upload dataset with vector observation

 		
 Upload dataset with image observation

 		
 Create Project

 		
 Start Training

 		
 Train with vector observation

 		
 Train with image observation

 		
 Export Policy Function

 		
 Tutorials

 		
 CartPole

 		
 Download dataset

 		
 Train

 		
 Deploy

 		
 MINERVA CLI

 		
 run

 		
 clean

 		
 upgrade-db

 		
 downgrade-db

 		
 License

_static/comment-bright.png

_images/training.jpg
MINERVA PROJECTS DATASETS o}

ADD PROJECT ca rtpOle RUN EDIT DELETE
breakout DATASET cartpole.csv ACTION MATCH v
ALGORITHM CQL
cartpole 17
40%) CQL_20209614218 running
EPOCH 4/10 I S
QFUNCTION MEAN 0.75+
SCALER NONE
3
CANCEL DOWNLOAD E
> 0.5
0.25-
0 T T 1
0 1 2 3
epoch
-0~ CQL_20209614218
NAME AUGMENTATION BATCHSIZE BOOTSTRAP EPS GAMMA LEARNING RATE N AUGMENTA

CQL_20209614218 @ none 32 false 0.00015 099 0.0000625 1

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

